首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   14篇
  国内免费   5篇
测绘学   15篇
大气科学   14篇
地球物理   72篇
地质学   229篇
海洋学   26篇
天文学   18篇
综合类   24篇
自然地理   18篇
  2023年   2篇
  2022年   9篇
  2021年   9篇
  2020年   14篇
  2019年   12篇
  2018年   22篇
  2017年   26篇
  2016年   23篇
  2015年   12篇
  2014年   29篇
  2013年   42篇
  2012年   23篇
  2011年   20篇
  2010年   18篇
  2009年   24篇
  2008年   10篇
  2007年   9篇
  2006年   12篇
  2005年   8篇
  2004年   10篇
  2003年   11篇
  2002年   7篇
  2001年   9篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   7篇
  1991年   6篇
  1990年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有416条查询结果,搜索用时 31 毫秒
11.
As Suqah area is a NW–SE trending wadi present in the west central part of the Arabian Shield. It comprises Precambrian–Cambrian basement rocks, Cretaceous–Tertiary sedimentary succession, Tertiary–Quaternary basaltic lava flows, and Quaternary–Recent alluvial deposits. The magnetic anomalies indicated the presence of many recent local buried faults. These affected the distribution of the clastic sedimentary succession and seem to have controlled the deep groundwater aquifers. Groundwater movement is towards the west and northwest, following in general the surface drainage system. Hydraulic gradient varies greatly from one point to another depending on the pumping rates and cross-sectional area of the aquifer in addition to its transmissivity. The detailed results of the resistivity and seismic measurements were integrated with those obtained from test holes drilled in the study area. Groundwater occurs mainly in two water-bearing horizons, the alluvial deposits and within the clastic sedimentary rocks of Haddat Ash Sham and Ash Shumaysi formations. The shallow zone is characterized with a saturated thickness of 3–20 m and water is found under confined to semi-confined conditions. Water levels were encountered at depths varying from 3 to 16 m in the alluvial wadi deposits and from 18 to 62 m in the sedimentary succession. The combinations of vertical electrical sounding, horizontal electrical profiling, and drilling led to the identification of groundwater resources in the study area. Resistivity soundings clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Significantly, the majority of the groundwater was found within the deep confined aquifer gravelly sandstone, rather than in the shallow unconfined aquifer.  相似文献   
12.
Drought analysis in Jordan under current and future climates   总被引:2,自引:0,他引:2  
Droughts have adverse socioeconomic, agricultural, and environmental impacts that can be reduced by assessing and forecasting drought behavior. The paper presents detailed analyses of both meteorological and vegetative droughts over the period from 1970 to 2005. Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) have been used to quantify drought according to severity, magnitude and spatial distribution at the Hashemite Kingdom of Jordan. Results suggest that the country faced during the past 35 years frequent non-uniform drought periods in an irregular repetitive manner. Drought severity, magnitudes and life span increased with time from normal to extreme levels especially at last decade reaching magnitudes of more than 4. Generated NDVI maps spatial analyses estimate crop-area percentage damage due to severe and extremely severe drought events occurred during October, December, and February of 2000 to be about 10%, 45%, and 30%, respectively. In response to drought spatial extent, the paper suggest the presence of two drought types, local drought acting on one or more geographical climatic parts and national drought, of less common but more severe, that extend over the whole country. Droughts in Jordan act intensively during January, February and March and tend to shift position with time by alternative migrations from southern desert parts to northern desert parts and from the eastern desert parts to highlands and Jordan Rift Valley (JRV) at the west. The paper also investigates the potential use of Global Climate Model’s (GCM) to forecast future drought events from 2010 till 2040. Tukey HSD test indicates that ECHAM5OM GCM is capable to predicted rainfall variation at the country and suggests future droughts to become more intensive at the northern and southern desserts with 15% rainfall reduction factor, followed by 10% reduction at the JRV, and 5% at the highlands.  相似文献   
13.
In this paper, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. Both the single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. Only the impermeable breakwaters are considered in this study. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with the appropriate mixed-type boundary conditions, and it is solved numerically using the ISBM. The numerical results are presented in terms of the hydrodynamic quantities of reflection and transmission coefficients. The values are first validated against the data of previous studies, computed, and discussed for a variety of structural conditions, including the height, width, and spacing of breakwater submergence. An excellent agreement is observed between the ISBM results and those of other methods. The breakwater width is found to feature marginal effects compared with the height. The present method is shown to accurately predict the resonant conditions at which the maximum reflection and transmission occur. The trapezoidal breakwaters are found to generally present a wide spectrum of reflections, suggesting that they would function better than the rectangular breakwaters. The dual breakwater systems are confirmed to perform much better than single structures.  相似文献   
14.
Multi-regression, hydrologic sensitivity and hydrologic model simulations were applied to quantify the climate change and anthropogenic intervention impacts on the Lower Zab River basin (LZRB). The Pettitt, precipitation-runoff double cumulative curve (PR-DCC) and Mann–Kendall methods were used for the change points and significant trend analyses in the annual streamflow. The long-term runoff series from 1979 to 2013 was first divided into two main periods: a baseline (1979–1997) and an anthropogenic intervention period (1998–2013). The findings show that the mean annual streamflow changes were consistent using the three methods. In addition, climate variability was the main driver, which led to streamflow reduction with contributions of 66–97% during 2003–2013, whereas anthropogenic interventions caused reductions of 4–34%. Moreover, to enhance the multi-model combination concept and explore the simple average method (SAM), Hydrologiska Byrans Vattenbalansavdelning (HBV), Génie Rural a Daily 4 parameters (GR4J) and Medbasin models have been successfully applied.  相似文献   
15.
Railway ballast forms a major component of a conventional rail track and is used to distribute the load to the subgrade, providing a smooth running surface for trains. It plays a significant role in providing support for the rail track base and distributing the load to the weaker layer underneath. Ballast also helps with drainage, which is an important factor for any type of transportation structure, including railroads. Over time, ballast progressively deforms and degrades under dynamic loading and loses its strength. In this study, extensive laboratory tests were conducted to investigate the effect of load amplitude, geogrid position, and number of geogrid layers, thickness of ballast layer and clay stiffness on the behavior of the reinforced ballast layer and induced strains in a geogrid. A half full-scale railway was constructed for carrying out the tests, which consisted of two rails 800 mm in length with three wooden sleepers(900 mm × 10 mm × 10 mm). Three ballast thicknesses of 200, 300 and 400 mm were used in the tests. The ballast was overlying 500 mm thickness clay in two states, soft and stiff. The tests were carried out with and without geogrid reinforcement; the tests were performed in a well-tied steel box of 1.5 m length ×1 m width ×1 m height. Laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, soil pressure and pore water pressure induced in the clay were measured in reinforced and unreinforced ballast cases. It was concluded that the amount of settlement increased as the simulated train load amplitude increased, and there was a sharp increase in settlement up to cycle 500. After that, there was a gradual increase that leveled out between, 2500 to 4500 cycles depending on the frequency used. There was a slight increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton but it was higher when the load amplitude increased to 2 tons. The increased amount in settlement depended on the existence of the geogrid and other parameters studied. The transmitted average vertical stress for ballast thicknesses of 30 cm and 40 cm increased as the load amplitude increased, regardless of the ballast reinforcement for both soft and stiff clay. The position of the geogrid had no significant effect on the transmitted stresses. The value of the soil pressure and pore water pressure on ballast thicknesses of 20 cm was higher than for 30 cm and 40 cm thicknesses. This meant that the ballast attenuated the induced waves. The soil pressure and pore water pressure for reinforced and unreinforced ballast was higher in stiff clay than in soft clay.  相似文献   
16.
We introduce a concept of generalized blending and deblending, develop its models and accordingly establish a method of deblended-data reconstruction using these models. The generalized models can handle real situations by including random encoding into the generalized operators both in the space and time domain, and both at the source and receiver side. We consider an iterative optimization scheme using a closed-loop approach with the generalized blending and deblending models, in which the former works for the forward modelling and the latter for the inverse modelling in the closed loop. We applied our method to existing real data acquired in Abu Dhabi. The results show that our method succeeded to fully reconstruct deblended data even from the fully generalized, thus quite complicated blended data. We discuss the complexity of blending properties on the deblending performance. In addition, we discuss the applicability to time-lapse seismic monitoring as it ensures high repeatability of the surveys. Conclusively, we should acquire blended data and reconstruct deblended data without serious problems but with the benefit of blended acquisition.  相似文献   
17.
Remote sensing data and digital elevation models were utilized to extract the catchment hydrological parameters and to delineate storage areas for the Ugandan Equatorial Lakes region. Available rainfall/discharge data are integrated with these morphometric data to construct a hydrological model that simulates the water balance of the different interconnected basins and enables the impact of potential management options to be examined. The total annual discharges of the basins are generally very low (less than 7% of the total annual rainfall). The basin of the shallow (5 m deep) Lake Kioga makes only a minor hydrological contribution compared with other Equatorial Lakes, because most of the overflow from Lake Victoria basin into Lake Kioga is lost by evaporation and evapotranspiration. The discharge from Lake Kioga could be significantly increased by draining the swamps through dredging and deepening certain channel reaches. Development of hydropower dams on the Equatorial Lakes will have an adverse impact on the annual water discharge downstream, including the occasional reduction of flow required for filling up to designed storage capacities and permanently increasing the surface areas of water that is exposed to evaporation. On the basis of modelling studies, alternative sites are proposed for hydropower development and water storage schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
18.
Flood hazard and risk assessment was conducted to identify the priority areas in the southwest region of Bangladesh for flood mitigation. Simulation of flood flow through the Gorai and Arial Khan river system and its floodplains was done by using a hydrodynamic model. After model calibration and verification, the model was used to simulate the flood flow of 100‐year return period for a duration of four months. The maximum flooding depths at different locations in the rivers and floodplains were determined. The process in determining long flooding durations at every grid point in the hydrodynamic model is laborious and time‐consuming. Therefore the flood durations were determined by using satellite images of the observed flood in 1988, which has a return period close to 100 years. Flood hazard assessment was done considering flooding depth and duration. By dividing the study area into smaller land units for hazard assessment, the hazard index and the hazard factor for each land unit for depth and duration of flooding were determined. From the hazard factors of the land units, a flood hazard map, which indicates the locations of different categories of hazard zones, was developed. It was found that 54% of the study area was in the medium hazard zone, 26% in the higher hazard zone and 20% in the lower hazard zone. Due to lack of sufficient flood damage data, flood damage vulnerability is simply considered proportional to population density. The flood risk factor of each land unit was determined as the product of the flood hazard factor and the vulnerability factor. Knowing the flood risk factors for the land units, a flood risk map was developed based on the risk factors. These maps are very useful for the inhabitants and floodplain management authorities to minimize flood damage and loss of human lives. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
19.
Antarctic tabular icebergs are important active components in the ice sheet-ice shelf-ocean system. Seafloor topography is the key factor that affects the drifting and grounding of icebergs, but it has not been fully investigated. This study analyzes the impact of seafloor topography on the drifting and grounding of Antarctic tabular icebergs using Bedmap-2 datasets and iceberg route tracking data from Brigham Young University. The results highlight the following points. (1) The quantitative distributions of iceberg grounding events and the tracking points of grounded icebergs are mainly affected by iceberg draft and reach their peak values in sea water with depths between 200 m and 300 m. The peak tracking point number and linear velocity of free-drifting icebergs are found in the Antarctic Slope Front (water depth of approximately 500 m). (2) The area of possible grounding regions of small-scale icebergs calved from ice shelf fronts accounts for 28% of the sea area at water depths less than 2000 m outside the Antarctic coastline periphery (3.62 million km2). Their spatial distribution is mainly around East Antarctica and the Antarctic Peninsula. The area of possible grounding regions of large tabular icebergs with long axes larger than 18.5 km (in water depths of less than 800 m) accounts for 74% of the sea area. (3) The iceberg drifting velocity is positively correlated with ocean depth in areas where the depth is less than 2000 m (R=0.85, P<0.01). This result confirms the effect of water depth variations induced by seafloor topography fluctuations on iceberg drifting velocity.  相似文献   
20.
R. Mohammed 《水文科学杂志》2013,58(10):1558-1573
ABSTRACT

A baseflow separation methodology combining the outcomes of the flow–duration curve and the digital filtering algorithms to cope with the restrictions of traditional procedures has been assessed. Using this methodology as well as the monitored and simulated hydro-climatological data, the baseflow annual variations due to climate change and human-induced activities were determined. The outcomes show that the long-term baseflow index at the upstream sub-basin is nearly half of that at the downstream from October to April, whereas they are close to each other for the remaining months. Some of the groundwater reacts to precipitation and an evident rise in the groundwater contribution was detected for the hydrological years 1998–2001 and 2006–2008. The contrary was recorded for1987. The water released from the reservoir in the dry periods led to distinctions in the detected baseflow index between the pre-damming and post-damming periods of the river.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号